Small Footprint Full-Waveform Metrics Contribution to the Prediction of Biomass in Tropical Forests

نویسندگان

  • Francesco Pirotti
  • Gaia Vaglio Laurin
  • Antonio Vettore
  • Andrea Masiero
  • Riccardo Valentini
چکیده

We tested metrics from full-waveform (FW) LiDAR (light detection and ranging) as predictors for forest basal area (BA) and aboveground biomass (AGB), in a tropical moist forest. Three levels of metrics are tested: (i) peak-level, based on each return echo; (ii) pulse-level, based on the whole return signal from each emitted pulse; and (iii) plot-level, simulating a large footprint LiDAR dataset. Several of the tested metrics have significant correlation, with two predictors, found by stepwise regression, in particular: median distribution of the height above ground (nZmedian) and fifth percentile of total pulse return intensity (i_tot5th). The former contained the most information and explained 58% and 62% of the variance in AGB and BA values; stepwise regression left us with two and four predictors, respectively, explaining 65% and 79% of the variance. For BA, the predictors were standard deviation, median and fifth percentile of total return pulse intensity (i_totstdDev, i_totmedian and i_tot5th) and nZmedian, whereas for AGB, only the last two were used. The plot-based metric showed that the median height of echo count (HOMTC) performs best, with very similar results as nZmedian, as expected. Cross-validation OPEN ACCESS Remote Sens. 2014, 6 9577 allowed the analysis of residuals and model robustness. We discuss our results considering our specific case scenario of a complex forest structure with a high degree of variability in terms of biomass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests

An accurate estimation of total biomass and its components is critical for understanding the carbon cycle in forest ecosystems. The objectives of this study were to explore the performances of forest canopy structure characterization from a single small-footprint Light Detection and Ranging (LiDAR) dataset using two different techniques focusing on (i) 3-D canopy structural information by discr...

متن کامل

Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR

The spatial distribution of plant diversity and biomass informs management decisions to maintain biodiversity and carbon stocks in tropical forests. Optical remotely sensed data is often used for supporting such activities; however, it is difficult to estimate these variables in areas of high biomass. New technologies, such as airborne LiDAR, have been used to overcome such limitations. LiDAR h...

متن کامل

Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales

a r t i c l e i n f o Accurate estimate of biomass and its changes at local to regional scales are important for a better understanding of ecosystem function, biodiversity and sustainability. In this study we explored the forest biomass prediction and dynamic monitoring from Light detection and ranging (LiDAR) waveform metrics at different key map scales. NASA's Laser Vegetation Imaging Sensor ...

متن کامل

National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China

Forest aboveground biomass (AGB) was mapped throughout China using large footprint LiDAR waveform data from the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat), Moderate Resolution Imaging Spectro-radiometer (MODIS) imagery and forest inventory data. The entire land of China was divided into seven zones according to the geographic charac...

متن کامل

Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica

[1] In this paper we present the results of an experiment to measure forest structure and biomass dynamics over the tropical forests of La Selva Biological Station in Costa Rica using a medium resolution lidar. Our main objective was to observe changes in forest canopy height, related height metrics, and biomass, and from these map sources and sinks of carbon across the landscape. The Laser Veg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014